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Abstract. In this paper, we use an adaptive synchronization technique for parameter
matching with chaotic persistent excitation (PE). Two Chua’s oscillators, identical
in every parameter except for one, are set up in a master/slave configuration where
the slave’s mismatched parameter is adaptable. Using a Lyapunov function and
incorporating the presence of PE, an adaptive control law is given to ensure exact pa-
rameter matching. A high-fidelity SPICE simulation model is given that incorporates
commercially-provided macro models of the integrated circuits used and obviates the
need for any user-defined functions. A voltage controlled inductor-gyrator is used as a
tunable parameter made up of current feedback op amps (CFOAs). The performance
of the adaptive controller is compared over a wide range of parameter values by us-
ing MATLAB simulations. SPICE and MATLAB simulations are run with realistic
component tolerances to mimic a physical experiment.
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1 Introduction

Chua’s circuit has been extensively used to study various topics relating to
chaos theory, including synchronization of coupled chaotic systems [13]. When
two chaotic systems are not identical, synchronization becomes less trivial and
various adaptive schemes are considered. For example, adaptive synchroniza-
tion of Chua’s oscillator has been considered with adaptive observer design [5],
parameter identification [19], and adaptive backstepping [6]. Many of the prior
works are theoretical in nature, difficult to realize experimentally, and may
not yield exact parameter matching [3]. To render adaptive synchronization of
chaotic circuits closer to physical realization, Ref. [18] has provided SPICE sim-
ulations with ideal user defined functions for the adaptive controller. Ref. [§]
has suggested circuit schematics to realize an adaptive controller for synchro-
nization of uncertain and delayed chaotic systems, but it does not account for
the non-ideal characteristics of integrated circuits such as the AD633.
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Adaptive synchronization of Chua’s oscillators can be categorized in two
parts: adapting the control coupling between the two circuits or adapting one
or more parameters of the Chua’s oscillators [4]. Both adaptive synchronization
approaches have been digitally implemented for secure communication applica-
tions. The first approach is used to account for changes in signal strength [20],
while the second approach introduces deliberate changes in the parameters as
a way to send binary messages as a ‘key’ [4].

In this paper, we use an adaptive synchronization technique for parameter
matching with chaotic PE. Two Chua’s oscillators, identical in every parameter
except for one, are set up in a master/slave configuration where the slave’s mis-
matched parameter is adaptable. Using a Lyapunov function and incorporating
the presence of PE, an adaptive control law is given to ensure exact param-
eter matching. Following Ref. [15], this paper uses analog circuit schematics,
which exploit CFOAs, to implement the derived adaptive controller. Moreover,
a high-fidelity SPICE simulation model is provided that incorporates commer-
cially available macro models of various integrated circuits used and obviates
the need for any user-defined functions. The performance of the adaptive con-
troller is compared over a wide range of parameter values by using MATLAB
simulations. SPICE and MATLAB simulations are run with realistic compo-
nent tolerances to mimic a physical experiment. For experimental results that
parallel the simulation studies of this paper, see Ref. [15].

2 System Model

2.1 Chua’s Oscillator

In this paper, an adaptive controller is designed to tune a parameter of the
Chua’s oscillator shown in Figure 1. Various parameters of a Chua’s oscillator
include L as a linear inductor, R and Ry as linear resistors, C; and C5 as
linear capacitors, and others that correspond to the Chua’s diode. The state
equations of the Chua’s oscillator are given by

dv 1
T;:a(G(UQ_Ul)_g(UI))a
| (1)
d’U2 - 1 . d’LL - 1 .
T =g (C—m i) T = 7 (e Roin),

where vy, vo, and iy are voltage across (1, voltage across Co, and current
through L, respectively, and G is the conductance of the resistor R (G £ %)
Furthermore ¢(-) is the nonlinear voltage-current (v—i) characteristic of the
Chua’s diode described by

Gyugr + (Gb — Ga)El, if vg < —FEq,
g(vr) = § Gqvr, if [vr| < E1, (2)
Gyvr + (Go — Gy)Ey, if vg > Ey,

where G,, Gy, and E; are known real constants that satisfy G, < G, < 0 and
Ey > 0.
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Fig. 1. Master/slave Chua’s oscillator coupling.

2.2 Master/slave System

The adaptive control framework of this paper considers a unidirectional cou-
pling from a master Chua’s oscillator to a slave Chua’s oscillator such that
the slave Chua’s oscillator synchronizes its states to the states of the master
oscillator which operates autonomously. This configuration is shown in Fig-
ure 1 where it is assumed that the following parameters of the master and
slave Chua’s oscillators are matched, R = R, Ry = Ry, C1 = C4, and Cy = (5.
The state equations of the master Chua’s oscillator are equivalent to (1) while
the state equations of the slave Chua’s oscillator are given by

dv 1 ~ ~ -

dftl = (G(WQ —01) = g(v1) + Gu, (Vu, — Ul))a )
v 1/, = dip, _ 1, L~
Hfa(G(vl—Uz)-HL), g*f(‘”Z_ROZL)’

where v,, = v; since it is the output of a voltage follower op-amp and G,, is
the conductance of the coupling resistor Ry, in Figure 1 (G, £ ). Note
Uy

that L is a tunable parameter for which we give an adaptive parameter update
law in Section 3.

3 Adaptive Synchronization: Tuning L

In a master/slave configuration, the master Chua’s oscillator is described by
(1). For the slave Chua’s oscillator, inductance L is the tunable mismatched
parameter for the slave Chua’s oscillator (3). Subtracting (1) from (3) produces
the error dynamics

. 1
by, = —

1 Cl
. 1
Cpy = 072

(G (6172 - e'Ul) - C(,ﬁlvvl) €y, T ul)a
1 o (4)
<G (61)1 - 61)2) + eiL)a éiL = f(* 2 ROiL) + Z (U2 + ROiL)a



where e,, £75 —u, €y £ Ty — vg, and €y, £ ZL — 11, are the error states and
u; £ Gy, (v1—701). Moreover, it is easy to show that g(v1) —g(v1) = ¢(D1,v1)ey,
where ¢(01,v1) is bounded by the constraints G, < ¢(v1,v1) < Gy < 0 [7].

Next, let the control law and parameter update law, respectively, be given
by

d /1 . ~
up = —Gy, €y, and T (Z) = ye;, (’Ug + RO’LL) ) (5)

where v is a positive constant.

Theorem 1. [15] The two Chua’s oscillators (1) and (3) will synchronize
and the parameter L will converge to some constant under (5) if the master
system (1) remains on the trajectory of its chaotic attractor and G, is chosen
to satisfy the following inequality

1
Gu1 > iG_Gax (6)

Remark 1. Note that the results of Theorem 1 are also applicable if the Chua’s
oscillator is on a periodic trajectory. As long as the attractor of the Chua’s
oscillator is bounded, the results of Theorem 1 hold.

Remark 2. When the trajectories of (1) are driven on a chaotic attractor, its
states will satisfy the qualities of PE as discussed in [10,11,14] and L(¢) — L(t)

as t — co. Further evidence of L(t) — L(t) as t — oo is provided via simulation
results in the sequel.

4 Tuning L Implementation

Over the years, several variations of the Chua’s oscillators have been devel-
oped [9]. Similarly, master/slave coupling between two Chua’s oscillators for
state v (and wvq) is easily achievable with just one resistor and one op-amp
(Figure 1). However, measuring and controlling the state iy, is not as trivial.
Therefore variations of inductorless implementations of Chua’s oscillators have
been developed [9]. This paper implements the adaptive controller (5) which
tunes the parameter L to L. The measurement of i . and ;L along with the
ability to tune L is possible by using inductor-gyrators made up of CFOAs.
Refer to our parallel experimental work [15] for detailed explanation of the
circuitry required for this task.

5 SPICE and MATLAB Simulation Results

5.1 SPICE Simulation Results

SPICE simulations are done to mimic an experimental scenario to examine
the influence of unmodeled parasitic effects on the physical system that are
not amenable to examination using the ideal circuit equations such as (1),
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Fig. 2. Schematic of master/slave Chua’s oscillator as constructed in the TINA-TI
SPICE simulation software.

(3), and (5). This simulation strategy can be an integral step in designing
complex chaotic experiments. Hence, we develop a SPICE simulation model
(see Figure 2) containing the various non-ideal behaviors of components such
that the simulation model can closely represent a plausible experiment. This
includes extracting the signals iy, and i by measuring the voltages at nodes
vq and vhq in the SPICE simulation (see Figure 2) as opposed to directly
extracting iy, (vq = irR1m,) and i (vhqg = ?Lﬁflm). The SPICE simulator
TINA-TT V9 [16] is chosen because of the capability of its numerical solver



to optimize its tolerance parameters for convergence. As shown in Figure 2,
we used three distinct integrated circuits (ICs), the AD633, the AD844, and
the TLO082. High fidelity SPICE Macro-Models [1,2,17] of each IC are used
in the SPICE simulation. Similarly, the JFET used, the 2N3819, is modeled
in TINA-TT V9 using the Sckickman-Hodges model with specific parameters
for the 2N3819 already embedded in the software. Simulation is run using the
order 2 trapezoidal integration method. Two initial conditions are set to -6V
and 6V at nodes vy and vy, respectively. The AD633 input terminal Z has a
direct —5 mV source connected to it for the purpose of compensating for the
internal DC offset of the AD633.

The simulation uses the ideal values of the passive components for the
master Chua’s oscillator as shown in Table 1. In addition, values of passive
components in the slave Chua’s oscillator and adaptive controller are increased
by their respective tolerances as indicated in Table 1. These tolerances are
selected based on commercially available components.

Table 1. Simulation component values.

Master Chua’s Oscillator|Adaptive Controller|Slave Chua’s Oscillator
Ry = 22 k2 Ry, =500 2 1% |R1 = 22 k2 0.1%
Ry =22 k2 Rr=1k01% |Ry=22k20.1%
Rs = 3.3 k2 Cr = 18 nF 3% Rs = 3.3k20.1%
Ry = 220 2 Ri=11k01% |R4=22020.1%
Rs = 220 2 Ry =220 20.1% |Rs =220 20.1%
Re = 2.2 k2 Re = 2.2k 0.1%
R=17k0 R=17k10.1%
Cy = 10 nF Cy = 10 nF 1%
Cy = 100 nF Cy = 100 nF 1%
C =18 nF C = 18 nF 3%
Ro = 200 02 Ro =200 2 0.1 %
Rim = 1 k2 Rim =1k 0.1%
Rom = 2.25 k2 Rom = 2.25k2 0.1 %
Ram = 1 k02 Rsm = 1k20.1%
Rps =1 k2 TR = 2N3819
Fom1 = 10 k2 1%
Fomz = 10 k2 1%

To quantify how well the master/slave system synchronizes, we use the 2-
norm of [e,, , €y,, ¢, |7 as our measure, (enorm = ||[€;» €vy,€iy ] ||), and observe
its evolution over time. Using the signals iy, and U2 we estimate L and éo (Eesty
JN%Oest) with a sliding window least square algorithm. Similarly, using signals i,
and vy we estimate L and Rg (Lest, Roest). Comparing these estimates allows
us to examine how well L converges to L. The transient experimental data
is displayed in Figure 3, divided into parts (a)—(e). Switch SW1 is opened at
t = 0.025s which initiates adaptation. Each point on Figure 3(c) represents a
least square estimate of a window of 50 samples and the x-axis indicates the
time when the leading sample is taken. Figure 3(d) and Figure 3(e) re-plot the
last 10 ms of Figure 3(b) and Figure 3(c), respectively, to better visualize the



steady-state results. The average of each signal (except V.) in sections (d) and

(e) is listed in Table 2.

Table 2. SPICE simulation: Adapting for L with tolerances.

Ro = 200 2

Ro =200.2 2

enorm = 1.8 x 1073 (average)| Lest

Roest = 202.89 (2 (average)
Roest = 202.84 2 (average)
L = 40.5 mH (see (21) [15]) |Lest = 45.4 mH (average)
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Fig. 3. SPICE simulation: Adapting for L with tolerances.



5.2 MATLAB Simulation Results

MATLAB-Simulink simulations are run to examine the performance of the
adaptive control laws derived in Section 3 as a function of the behavior of the
master Chua’s oscillator which changes from chaotic to equilibrium behavior.
Simulations are run 1,000 times for 1,000 different values of C; ranging from
10 nF to 13 nF. With each change in the C; value, the simulation result for the
master Chua’s attractor also changes. To illustrate the change in the master
Chua’s attractor with the change in the value of C;, Figure 4 provides the
bifurcation diagram for the master Chua’s oscillator for the 1,000 values of
C1. To capture the impact of component tolerances the slave Chua’s oscillator
parameters are increased by 0.1% (not including Cy, which is set to C).

All simulations are set up as follows: simulations are run by using the
Runge-Kutta 4th order numerical solver with a fixed step-size of 10 microsec-
onds for a simulation time of two seconds. The initial conditions are selected
to be v1(0) = 1, v3(0) = 0, i,(0) = 0, v1(0) = 2, ¥2(0) = 0, and i1(0) = 0.
Since it takes time for the master Chua’s oscillator to evolve from the initial
condition to reach the attractor corresponding to the chosen C; value, the pa-
rameter update law is activated only after 0.5 seconds into the simulation. The
parameters used in simulations are listed in Table 3. Figure 4 shows the results
for the MATLAB simulation. Figure 4 uses three measures to examine the
performance of the adaptive controller. The first performance measure is the
error e,(t = 2), that is the parameter error after two seconds of simulation time
averaged over the last 10 ms of simulation. The second performance measure
is enorm(t = 2), that is the norm of the error state vector after two seconds
of simulation time averaged over the last 10 ms of simulation. Finally, the
third performance measure is the settling time (s ), that is the time it takes
the slave oscillator’s adaptive parameter to reach within 10% of the master’s
corresponding fixed parameter.

Table 3. MATLAB simulation parameters.

G =1/1700 S G =1/1700 + 1/1700000 S|y = 5 x 107
Ro =13 02 Ro = 13.013 22 L =18 mH
Ga = —0.40909 mS|G, = —0.40949909 mS  |L(0) = 10 mH
Gy = —0.75758 mS |G, = —0.75833758 mS

Ey =1.1739 V Ey =1.1750739 V

Gu, = 1/500 S G, =1/500 4 1/500000 S

Cs = 100 nF Cy = 100.1 nF

5.3 Discussion

We first comment on the overall performance of the SPICE simulation per-
formed in Section 5.1 by observing Figures 3(b) and 3(c). In the macro scale
plot, once the adaptive controller is activated at ¢ = 0.025s, the measure eyorm
approaches zero and the estimates of the slave oscillator parameters (Res; and
Eest) approach the corresponding parameter values of the master oscillator.
However, in Figure 3(c), estimated values of Ry and Ry undergo change de-
spite the fact that Ry is a fixed parameter and the parameter update law is only
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Fig.4. MATLAB Simulation: Adapting for L with tolerances.

supposed to change the parameter value L. This indicates that the inductor-
gyrator is not a pure inductor but only a good-enough model for this system
to operate within certain tolerances. Next, we examine Figures 3(d) and 3(e)
which show the last 10ms of Figures 3(b) and 3(c), respectively. The state
errors between the master and slave Chua’s oscillator still exist and the pa-
rameters L and L do not perfectly match, with a 0.1mH difference on average
(Table 2). This mismatch is attributed to component tolerances. In a simula-
tion study of adaptive synchronization of Chua’s oscillators with a mismatched
parameter, [12] similarly observed that the adaptive parameter does not con-
verge to the desired value. Repeating the SPICE simulation without including
competent tolerances (see Table 4 and Figure 5), it is seen by averaging the
last 10 ms of the 40 ms simulation that there is no difference between L., and
Lest-

Next, we comment on our MATLAB simulation results (Figure 4) that il-
lustrate how the adaptive controller performs depending on the behavior of the
master Chua’s oscillator. Note that adaptation of parameter L occurs regard-
less of the system being chaotic or a simple oscillator. The adaptive controller
stops working only when the master Chua’s oscillator is in steady state. A close
examination of Figure 4 reveals a large spike in eyopm at around C; = 12.32 nF.
This spike is due to the fact that in this small range of C; the Chua’s oscillator
is approaching equilibrium very slowly in which the 2 second simulation time is
not enough for the master Chua’s oscillator to reach its steady state behavior.
The only time enom reaches close to zero is when the Chua’s attractor is in
equilibrium, which is when C; goes above 12.33 nF. At equilibrium, the energy
storing components no longer have a long term effect on the system and the



inductor functionally behaves as a short and the capacitors behave as open.
In this mode, the adaptive parameters do not converge to any particular value
but stay the same. Additional MATLAB simulations conducted with ideal pa-
rameter values show that the errors decrease by several orders of magnitude
(see Figure 6).

€norm
~

-

Table 4. SPICE simulation: Adapting for L without tolerances.

Ro = 200 2
Ro = 200 2

L = 40.5 mH (see (21) [15])
norm = 1.6 x 1073 (average)
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6 Conclusion

In this paper we presented an adaptive controller that is designed to match a pa-
rameter (L) in two Chua’s oscillators with the presence of PE. We implemented
the adaptive controller using analog circuitry in a high-fidelity SPICE simula-
tion while incorporating reasonable electrical component tolerances. Further-
more, we tested our adaptive controllers over many conditions of the Chua’s
oscillator using MATLAB simulations. Our results show that the adaptive
controller achieves parameter matching with a certain degree of error due to
tolerance mismatch of the master and slave Chua’s oscillator. In addition, the
adaptive controller performs not only when the master Chua’s oscillator is in
the chaotic mode but also when the system is a simple oscillator (and does not
fulfill the qualities of PE).
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